
^

r

AD-777 957

LANGUAGE-INDEPENDENT PROGRAMMER'S INTERFACE

UNIVERSITY OF SOUTHERN CALIFORNIA

PREPARED FOR

ADVANCED RESEARCH PROJECTS AGENCY

MARCH 1974

DISTRIBUTED BY:

Kür
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

t I I * Ihlk rf^^^^Mrii

^N -^

SECURITY CLASSIFICATION OF THIS PAGE fHTi»n Dmlm Enlmred)

REPORT DOCUMENTATION PAGE
1 KEPORT NUMBER

ISI/RR-73-15

2. GOVT ACCESSION NO

4. TITLE (mnd Sublllle)

Language-Independent Programmer's Interface

7. AUTMORf»;

Robert M. Balzer

9 PERFORMING ORGANIZATION NAME AND ADDRESS

USC/lnformation Science: Institute
4676 Admiralty Way
Marina del Rey. California 90291

II. CONTROLLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, Virginia 22209

T4 MONITORING AGENCY NAME A AODRESSCff d/

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER m
5. TYPE OF REPORT « PERIOD (fovERED

Research Report

t. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBERC«;

DAHC 15 72 C 0308

10. PROGRAM ELEMENT. PROJECT, TASK
AREA A WORK UNIT NUMBERS

ARPA Order No. 2223/1

12. REPORT DATE

March 1974

ESS(II dlllertnl Irom Conlrotllnt Olllct)

O DUMBER OF PAGES

IS. SECURITY CLASS, (ol thi, report;

none

ISa. DECLASSIFI CATION/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol Ml Htpott)

Distribution unlimited. Available from National Technical Information Service,
Springfield, Virginia 22151.

17. DISTRIBUTION STATEMENT (al th» mbittmct •ntcrcd in Block 20, It dltlmrtni from Report;

18. SUPPLEMENTARY NOTES

This paper will be given at "he National Computer Conference and Exposition,
Chicago, Illinois, May 6-10, 1974. It will also appear in the API PS Conference
Proceedings, Vol. 43, AFIPS Press, Montvale, New Jersey, ln74.

19. KEY WORDS CConttnu« on rovor«« »Id» II n»c»»»»ry and Idtnilly by block number;

BBN-LISP and EL/1, domain-independent, human-engineered, interactive system,
programming system, programming environment.

20. ABSTRACT CConttnu* on rovor» »Ida II n»ca»»ary and Idanllty by block number;

pneev

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE
U S Department of Commerce

Springfield VA 22151

DDt^
M73l473 EDITION OF I NOV 68 IS OBSOLETE

S/N 0102-014-6601
SECURITY CLASSIFICATION OF THIS PAGE flWien Data Bntered;

t i JM

^N
^

ARPA ORDER NO. 2223/1

ISI RR.73-n
March 1974

Robert M.Balzer

Language-Independent Programmer's Interface

\

D D C
n]E©ra[LQEI
X< MAY 7 1974

INIDRMATION SCIENCES INSTITUTE

UNIVERSITY OF SOI THERS CAUFORNIA MI 467Ä AitiinwiU) Wa^lMariihtdel Rc^/Gi/ifoniia 90291

(2ti)i22'liU

THIS RESEARCH IS SUPPORTED Br THE ADVAMCEO RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHC1S 72 C 0306 ARPA ORDER

NO 2223/I. PROGRAM CODE NO 3D3OAND3PI0

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE

OFFICIAL OPINION OR POLICY OF THE UNIVERSITY OF SOUTHERN CALIFORNIA OR ANY OTHER PERSON OR AGENCY CONNECTED WITH IT

-HIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND S ILE DISTRIBUTION IS UNLIMITED //

• -^ *-

^r
^

CONTENTS

Abstract v

Jn roductlon 1

System ArchItecture 2

Interfacing a Language 5

PI-l/ECL Example 6

Conclusion 9

References II

\

iil

■ * •^ mi

^7 *-»
^

AB^TRACT

A Programmer's Interface (PI) Is a system vhlc. transforms an Interpretive language

Into a programming system by providing a language-lndependent set of "environment" tools

to be used In conjunction with the execution capabilities of the Interpretive language.

This "environment" consists of tools for creating, editing, debugging, filing and

retrieving programs, for automatic spelling correction, for modifying and reissuing

previous commands, and for undoing them to recover earlier states. A PI thus greatly

expands the facilities available for program development without affecting the

programming language or its capabilities. The Importance of such a transformation

cannot be overstated in terms of programmer productivity.

Any language with the following three properties can be interfaced to a PI at a

fraction of the cost (several man-days versus several man-years) of creating a separate

suitable programming system ifJ 1) there Is a way to foim a coroutine linkage between

the language processor and the PI by interconnecting their I/O ports; 2) the language

has an on-line evaluator and can field breaks or errors within a computations and 3)

either in such breaks or at the top level, the evaluator can evaluate arbitrery forms In

that language.

A particular system (PI-1) has been constructed as an Instance of the PI concept,

using INTERL1SP, and it provides INTERLISP's tools to interfaced languages. This PI has

been successfully interfaced to ECL using the ARPA Ne'.work as the communications

mechanism. The significance of this work lies In the observation that very little of

the PI or the capabilities available In the INTEPLISP programming environment are

language-dependent, and in the experience gained In determining how a PI should be

constructed and how languages should be Interfaced to It, rather than in the interfacing

between the PI and any particular language.

This work Is of special relevance to large DOO-MIlItary software production

efforts. The research is directed towarr1 ii'gher productivity and higher quality

software. This work Is sponsored under ARPA Contract No. 0AHC15 11 C 0308, ARPA Order

No. 2223/1, Program Code No. 3D30 and 3P10.

Preceding page blank

■ - iJl .^tw—^^^^aaaMOl

■'s
^

INTRODUCTION

This paper addresses the general problem of creating a suitable on-line environment

for programming« The amount of software, and the effort required to produce It, to

support such an on-line environment Is very la.qe relative to that needed to produce a

programming language, and Is largely responsible for the scarcity of such programming

environments. The size of this effort was largely responsible for the scrapping of a

major language (QA4IIJ) as a separate entity and Its inclusion Instead as a set of

extensions In a LISPI2J environment. The few systems whl h do exist (e.g.- LISP,

APU3J, BASIC[4J, and PL/H5]) have greatly benefited their users and have strongly

contributed to the widespread acceptance of the associated language.

At a uare minimum, a suitable programming environment consists of an on-line

Interpreter (or incri-mental compiler), an Integrated Interactive source-level debugging

and editing system, and a supporting file structure. More extensive environments would

Include such facilities as automatic spel11ng correction, structural editors, tracing

packages, test case generators, documentation facilities, etc.

Looking at several programming environment systems, one recognizes much uniformity.

Most of the software supporting these systems is similar In both its organizational

structure and functions. The systems differ In detail more from style differences

between the system designers than from differences required by the programming

languages.

The Programmer's Interface (PI) concept attempts to exploit this uniformity by

creating a single proorarmlng environment capable of easily interfacing users with a

wide variety of on-line programming languages. Users would then have the full

facilities of this environment at their disposal. The PI is thus responsible for

transforming these programming LANGUAGES into SYSTEMS. The cost of providing such an

environment for a language would drop from the several man-years now required to the few

man-day (estimated) to interface to a PI. Additionally, the existence of a common

programming environment for many different languages would Justify the inclusion of

further capabilities.

' - Mi

^r w^

^

This common programini ncj environment provided by a PI should include facilities forJ

creating, modifying, storing, and retrieving programs; on-line debugging, including

trace and break facilities üS well as the facilities of the lanjuage for evaluation of

expressions at breaks; modify! no the interface between routines (via an ADVISEfö]

capability); automatic spelling correction; remembering, modifying, and reissuing

previous inputs; and undoinc the effects of any of these PI facilities.

Such a PI has been constructed and interfaced to the programming language ECL[7].

The remainder of this paper explains the PI concept in terms of this implemented

program. The deficiencies of this particular implementation are discussed in the

cone 1 us ion.

SYSTEM ARCHITECTURE

The facilities provided by the Implemented Programmer's Interface (PI-I) are based

on the 1NTERLISP system (formerly ßßN-LlSP)I2J. In fact, they are the facilities of

this system, as modified for language independence. The Programmer's Interface itself

is implemen'-ed in INTERL1SP and coexists with the facilities it invokes to provide the

programming environment. IMTERLISP was chosen as the basis both because it already had

an extensive set of programming tools in an accessible form, and because their structure

and operation could easily be altered to operate as required for a PI.

The system structure Is shown In figure 1. The ARPA NetworkI8] is used as the

communications mechanism between PI-1 and the user's language processor. This choice

has three advantages, first. It allows ehe Interfacing of PI-1 to any language

processor available on the ARPANET Independent of what machine It runs on. Second, this

Interfacing can be done by PI-I without the knowledge of the language processor. Thus

no modifications to the language processor are required, finally, the use of the

Network greatly slmpllf.es laiplenentlng the Interconnection by allowing externcl

character strings to be used for communication, rather than Internal data structures

with the attendant inccmpatlbl 11ty problems.

. . ^ V ._

^N
^

Put value
in history

I
Echo

suppression

I

4 User V

Store command
in history

LISP /Who should \
1 process it? J

(Any \
user language W
component? /

Figure 1. System architecture

User's
language

ARPANET ARPANET

i
G tenerate

output
User1» language

processor

- i i * fcIL -_———

^7
^

Three properties are required of a lancuage processor for tts use with a PI'

1) There Is a way to form a coroutine[S] 1 Inkace between the lanquaoe processor and the

PI by Interconnectl na their I/O ports. This type of llnkaoe Is discussed In detail

In [10.1. With PI-I, the ARPA Network provides this llnkaoe. Thus, for P1-», any

language processor available on the ARPANET satisfies the first requirement.

2) It has an on-line evaluator (either an Interpreter or fast compi ler) and can field

breaks or errors within a computation.

3) It can evaluate arbitrary forms in that language either in breaks or at the top

level.

PI-J begins processing user Input by storing it in a history list used by the

Programmer'''-. Assistant^], an IMTERLISP subsystem, to retrieve, edit, group, reissue, or

undo previous commands. PI-1 then examines the Input to determine whether it should be

processed by an INTERLIST' lacllity or by the user's language processor. Basically,

environment-type activities, s>ich as loading files, editing programs, advising a

function, etc., are performed within PI-1, while expressions in the user's language to

be evaluated are passed to the language processor.

If the user's Input is Intended for his language processor. It Is passed across the

ARPA Network to that language processor. Any output generated by the processor Is

received across the Network again by PI-1. It suppresses the echo of the input and

passes the output to the user, extracting from it the "value" and putting It Into the

history list for use by the Programmer's Assistant.

If the user's input Is an environment-type command and should be performed within

PI-1, the appropriate facility Is Invoked. In simple cases the operation completes,

returns a v;Jue that is put In the history, and another Input is processed. In more

complex situations, some Interaction Is required during the operation with the user's

'anguage processor. This Is accomplished by dynamically generating a series of Inputs

for the language processor that will have the desired effect or return the desired

Information. These are passed through the communications mechanisms to the processor;

- - - i >A

^ "^
^

Its output Is captured; and either the success of the modifications Is verified or the

desired Information Is »xtracted. Any number of such cycles n.ay l>e required before the

PI-1 facility complete^ Its processing of tie user's command. As an example, consloer

the loading of a file. As the 'unction definitions are read In, they are stored as a

property of the corresponding atoms to be used by the PI-l's editor for any

modifications required later. The function definitions also are passed to the language

processor o that It can use these for evaluation. Thus, one cycle Is required for each

function defined In the file.

PI-1 maintains a copy of all functions defined by the user and this Is used i.y

PI-l's editor when the user alters the definition. Whenever this definition ciianges (by

redefinition or thrcugh exiting the editor), the resulting definition Is passed to the

language processor as a new definition of the function.

INTERFACING A LANGUAGE TO A PROGRAMMEft'S INTERFACE

Most of PI-1 Is language-Independent, but certain portions must be modified to

accept a new language. These fall Into the categories of syntax modification,

synchronization, program writing, and debugging.

The INTERLISP editor used by PI-1 Is structural rather than string-oriented. To be

effective, the text It is manipulating must have a structural basis. The syntax

modification routines are responsible for Introduclna the structure Into the user's

language (only for -jse within PI-1). This structure Is of two forms. First Is the

grouping of characters into lexical units. The user's language may have very different

lexical grouping rules than LISP and the syntax modification package Is responsible for

the lexical analysis. Second, the lexical units thus produced are grouped Into larger

units by the use of parentheses. The^e units can be nested within one another to form

the familiar LISP S-expression structure. The designer of the syntax snodlt.'er must

decide wher.; to introduce this structural grouping. In ALGOL-lIke languages, a natural

place would be to group the lexical units of a statement together and groups of

statements within blocks together. The structural groupings selected are Introduced

Into all program text Input by the user, and used by him to direct the editor In Its

■i

•M I I ^'t-

—"N 7

modifications of this text. When this text Is passed to the language processor, those

structural groupings artificially Introduced for editing purposes are removed before

transiil sslon.

PI-1 and the language processor must be synchronl2ed and kept In step with each

other. Logically this is very simple and Is accomplished by having PI-1 wait until the

language processor has completed evaluating the previous Input before giving it another.

This situation is signaled by the language processor's attempt to read the next Input.

Unfortunately (aue to a deficiency in the network protocol), this Information Is not

available. Therefore the language processor's state of readiness must be determined by

examination of Its output stream. Fortunately, most on-line language processors

explicitly indicate their readiness for more input by providing tne user with a prompt

character. The language processor's output must be scanned for this prompt and this is

used as a synchronization nechanism between PI-1 and the language processor.

Several facilities within PI-1, such as break, trace, and advise, cause additional

statements to be written into the user's program for evaluation at runtime. The

Inter facer of a new language must specify the form of these additions.

PI-J contains many advanced debugging capabilities not found In most language

processors. These aids are all based on information oathered durino execution or at a

break point within the prooram. To use these facilities, the designer of the language

Interface must supply routines that provide the basic information on which these

debugging aids are built.

PI-1 took approximately three weeks to Implement and debug, including the language

Interface to £CL. Although no other language Interfaces have yet been built, it is

estimated that an Inter.ace to another suitable language could be designed, implemented,

and debugged in less than a week.

PI-1/£CL EXAMPLE

The following actual example indicates the use of PI-1 with the programming

language ECL. The prompt character (as defined by ECL) is either ->. *, or a number

.i.

^r 1

followed by J>. Commentary is enclosed In square brackets.

-> 3+4
7
-> T£ST1<-£XPR(A:INT

(TESIl)
-> I£ST1(3,^)
7
-> EDIIf(TSTl)

= TEsn
EDIT
*PP

[Input of expression to be evaluated.]
[Answer returned.]

,BJINT,INT)BEGIN A+B; END;
[Define a function,TEST 1, which takes
two Integer arguments A and 8 and returns
their sum. Syntax Is precisely as
defined for ECL.]
[TESTI defined.]
[Invoke TESTI with arguments 3 and A.]
[Ans er returned.]
[Ed t TESTI. I.oticf misspelling corrected by
system.]

(EXPR (A : INT , ß :
(8CCIM (A + B)

END))
*F BEGIN P

(BEGIN (A + B) END)
*(2 (A GT 6 => A-L;

[Prettyprint it. Notice how structure
has been added to Its internal repre-
sentat)on.]

INT ; INT)

[Find the I tern
Is found.]

'BEGIN' and print what

*PP

(BEGIN (A GT B =>
(A + B)
END)

*(-4 (A=B -> B <- 2*A))

A+B))
[Replace the second element, the list A+B,
by the remainder of the Input. This Is a
conditional form In ECL which evaluates
A-B I f A Is greater than B and A+B
otherwlse.]
[Prettyprint result. Again notice how
structure has been added.]

(A - B))

*PP
(BEGIN (A GT B =>

(A + B)
(A = B -> (
END)

*UKDO

(-4 --) UNDONE.
*PP

(BEGIN (A GT B =>
(A + B)
END)

*USE -3 FOR -4

*PP
(BEGIN (A GT B =>

(A = B -> (
(A + B)
(END)

(A -

B <-

(A -

(A -
B <-

[Insert rest of Input before fourth
element of current structure (the
END Item). Addition says to set
B to 2*A If A=B.]
[Prettyprint It.]
B)

2 * A))

[User notices his error (addition made at
wrong spot) and asks system to undo last
conunand.]

[Check to see that It's really gone.]
B))

[Substitute -3 for -A In the In-
sertion command and reissue lt.]
[Make sure addition put In correct spot.]
B))
2 • A))

J

"■N
^

•OK
fESTl
-> TEST1(3,A)

7
-> I£Sn(A,3)

[Exit editor.]

[Test function. A is less than
B, just adc them.]

[A cjreater than B, subtract
8 from A.]

[A=P, double E and add in A.]
1
-> TESIKA.AJ
12
->ADVISE(T£Sn BEFOPE (A<- 2*A))

[^odify TtSTl so that before it
Is entereo, but after its pararrcters
hi-ve been bound, the value of A
i s doubl ed.]

fESTl
-> TESI1(3,^)
2
-> USE 6 3 10 FOR k

[Invoke moc-iflea function.]
[Double 3 to cet 6 and subtract ^.J

[Successively substitute 6,3, and 10
for A in the last statement.]

10 [I£STl(3ffc)]
3 [T£rI»(3>3)]
>6 (TLSTIO.IO)]
->A0V]Ce(T£.cTi AfIEi< (VALUEW <- VALUE-1))

[Modify TEST1 so that after It Is
finished, but before It returns,
the value to be returned Is dec-
remented by 1.]

TEST I
-> REDO USE

TYPE FAULT
- BROKEN
NIL
TYPE FAULT
- BROKEN
NIL
TYPE FAULT
- BROKEN
NIL
3:>RETBRK(0}
NIL
-> TEST1(3,A)
TYPE FAULT
- bROKEN
NIL
i:> IN?
IN ENTRY OR EXIT Of-
IN TEST1 ...
VALUEW <- VALUE - 1

1J>£0IIF(TEST1)
EDIT
*F VALUE 0 P

(VALUEW <- VALUE -1)
•R VALUE VALUEW

[Rel ssue the previous USE command
(which generated the 3 Invocations of
TEST1)]

[3 type fault error occur.]

[Go back to top level.]

[Try simple case.]
[Error still occurs.]

[Where did error or^jr?]

[Error occurred In entry or exit of minus
routine which was invoked from TEST1 In
the statement VALUE\\<-VALUE-1. User
spots error (use of the undeclared
variable VALUE Instead of VALUEW).]
[Edit TEST1.]

[Find the use of VALUE. Go up one
structured level and print group.]

[Replace VALUE by VALUEW.]

- * i i ■it*-

^^N
^

*0K
TESTl
1S>I£ST1(3,^)
(1)

NIL
-> REDO
(17)
(2)
(15)

USE

CONCLUSION

(Exit editor.]

[Try test case again.]
[Double 3, subtract 4, then decrement
by 1.]
[Go up one level of error. In this
case to top level.]

[Relnvoke previous USE command.]
[TEST1{3,6)]
[T£ST1(3,3)]
[I£Sn(3t10)]

An extensive programming environment has been created for the ECL language through

a program (PI-1) which allows the use of the already existing INIERLISP facilities.

This greatly expands the user's facilities for creating, editing, and debugging his

programs. His programming language has been transformed Into a programming system. The

availability of a comprehensive set of "environment" tools working In conjunction with

the programmer's language Is extremely important to his productivity.

The significance of this work, however, lies not In the particular interface

provided between INTERLISP and ECL, nor In the extensive capabilities provided the user,

but rather. In 1) the observation that very little of the Interface Itself, or of the

capabilities provided, are language-dependent; 2) the recognition that the programming

environment can be effectively split into an "environment" part and an execution and

evaluation part; and 3) the experience gained from building such a system and

Interfacing a language to It.

PI-1, however, suffers from a number of deficiencies, the most Important of which

is the use of already existing tools In more general environments than they were

designed for. This was most notable in the use of LISP's editor for nonstructured text

(and the need therefore to Introduce structure by parentheses) and the need to replace

LISP's input routines to provide the proper lexical analysis for the Interfaced

language. Both of these problems could be avoided In a PI by having It use the syntax

description of the language to guide the Input, and editing and display of programs.

One of the strengt, s of the PI concept Is the split between the "environment" part

.iU. I ■ ^*-

ifm V

and the evaluation part. This split, however, Introduces the problem of communication

and synchronization; each part must keep the other informed about changes It makes that

affect the other. In PI-I, this comimjnlcatlon and synchronization was parclal and

clumsy. The flow of Information from the environment to the evaluation part was

adequate, but the reverse flow was not. The need to communicate to another program

suitable explanations of what the state of the evaluation was, what the cause of the

error was, or even that an enor occurred was simply not en' i sloped or planned for.

PI-I has thus demonstrated that a moderately Integrated PI can be built that has

facilities far beyond what is typically available at a fraction of the cost. However,

development of highly Integrated PI will have to await a better understanding of the

functional requirements of a language processor in such an environment.

Although the Programmer's Interface has only been Interfaced to one language (ECL),

and although it only contains a small fraction of the capabilities ultimately desired,

it is having a irajor efiect by acting as a prototype for a major software project

[11,12] being undertaken to develop this understanding and provide a single, common,

comprehensive programming environment Interfaced to a wide variety of languages running

on many afferent machines communicating through a network. New languages or machines

cou'd be Interfered to the system at a fraction of the cost of providing a separate

programmirg environment. Widespread usaoe would justify the expenditure of more

resources to aucment and improve the capabilities provided. Such a PI could free users

from having to develop their programs only with software available on their own machines

and could provide a much more comprehensive and coordinated software development package

than is currently available.

10

- - ■ i *IL in *m

^N wm^mm^m W^

REFERENCES

1 Rullfson, J. F., J. A. Derksen, and R. J. Wdldinger, QM: A Procedural Calculus
for Intuitive Reason!ng, Stanford Research Institute, Artificial Intelllqence
Center, Technical Note 73, November 1972.

2 Teitelman, W. 0., G. Bobrow, A. K. Hartley, and 0. L. Murphy, BBN-Ll^P TENEX
R.-ference Manual, Bol» Beranek and Newman, Inc., Cambrldce, Mass., July 1971.

3 Falkoff, A. 0., and A. E. Iverson, The APL Tertri nal Systetr; Instructions for
Operation, IBM Corporation, T. J. Watson Research Center, Yorktown Heiqhts, New
York, March 1967.

A Kerne y, J. G., and T. E. Kurtz, BASIC Programm!nc, John Wiley and Sons, Inc., New
York, 1967.

5 IBM Corporation, C/S j ! me Shari ng Ljption: PL/I Checkout Compi I er. Form SC33-0033,
November 1971.

6 Teitelman, W., "Automated Programming - The Programmer's Assistant," in the AF1PS
Conference Proceedings, Vol. Al, Part II, AFiTS Press, MontvaU, New Jersey,
1972, pp. 917-921.

7 Wegbrelt, B., "The ECL Programming Systems," in the AFIPS Conference Prociedings.
Vol. 39, AFIPS Press, Montvale, New Jersey, 1971, pp. 253-262.

8 Roberts, L. G., and B. 0. Wessler, "Computer Network Development to Achieve
Resource Sharing," In the AFIPS Conference Proceedings. Vol. 36, AFIPS Press,
Montvale, New Jersey, 1970, pp. 5A3-5A9.

9 Conway, M., "Design of a Separable Transltlon-DIagram Compiler," Communications of
£he ACM, Vol. 6, No. 7, July 1963, pp. 396-398.

10 Balzer, R. M., Ports - A Method for Dynamic Interprogram Communication and Job
Control, The Rand Corporation, Santa Monica, Calif., R-605-ARPA, August 1971.

11 Balzer, R. M., T. E. Cheatham, S. D. Crocker, and S. Warshall, National
Software Works Design. USC/Informatlon Sciences Institute, RR-Ji-Tb,Un
progress).

12 Balzer, R. M., T. £. Cheatham, S. D. Crocker, and S. Warshall, The National
Software Works, USC/Information Sciences Institute, RR-73-18, (In progress).

11

